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The flow of a jet of an inviscid, incompressible fluid emerging from a cylindrical pipe, 
of circular cross-section, into a stream of the same fluid is considered. The component 
of the external flow normal to the axis of the pipe is taken to be small compared with 
the speed of the jet. The results throw some light on the mechanisms that are 
responsible for the observed deflection of jets into the crossflow direction. 

1. Introduction 
The behaviour of a jet exhausting into a fluid of similar density which is flowing 

a t  an angle to the jet axis (the jet in crossflow) is important in a wide range of 
situations, from the dispersal of pollutants in the environment to the aerodynamics 
of aircraft like the Harrier in the transition between wing-borne and jet-borne flight. 
The present paper treats the mathematical problem that arises from a highly 
idealized model of flows of this type. The geometry considered is a semi-infinite pipe 
with vanishing wall thickness, in the form of a right circular cylinder, in an 
unbounded space. The fluid is assumed to be inviscid and incompressible, with the 
same density throughout. Far from the pipe the fluid moves with uniform velocity, 
and within the pipe, far from the orifice, it  also moves with uniform velocity. The jet 
emerges from the orifice bounded by a stream surface common to the interior and 
exterior flows, across which the pressure is continuous. Without wishing to dismiss 
the possibility that the appropriate solution may be unsteady, we seek a solution 
that is independent of time. This takes the form of a pair of potential functions, 
solutions of Laplace’s equation, coupled by conditions on an initially unknown 
boundary. We do not specify the direction or properties of the jet a t  a large distance 
from the origin because the mean streamlines in the jet surface act like characteristics, 
as discussed in 54, because we believe the disturbance introduced by the jet into the 
uniform flow at infinity is negligible in three dimensions, and because the analysis we 
use does not require such downstream boundary conditions. In  this way, we obtain 
a problem which appears well-posed but intractable. 

The classical approach of introducing a small parameter is followed. The 
component of the ambient velocity normal to the axis of the pipe is assumed to be 
small compared with the velocity in the pipe. The departure of the jet from the 
circular cylinder defined by the pipe is, consistently, also assumed to be small. The 
component of the ambient velocity along the pipe axis is not restricted, although 
conceptual difficulties arise if its sense is opposed to that of the pipe flow. If the 
normal component of the ambient velocity is E times the undisturbed speed in the 
pipe, where e is small, we can distinguish two distinct lengthscales in the development 
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of the jet. The first is obviously the scale of the pipe radius a ;  the second emerges as 
the longer scale ale .  It is on the second scale that deflection of the jet or significant 
distortion of its cross-section takes place. The first few terms in an expansion of the 
appropriate solution can be found relatively easily. They provide a downstream 
boundary condition for the solution on the scale of a. A solution on this scale, 
expressed in terms of integrals, has been obtained, by an application of the 
Wiener-Hopf technique, as used by Lennox & Pack (1963) for planar, compressible 
jets. 

Before outlining the results obtained, we provide some motivation for this 
approach to the jet in crossflow. A characteristic feature of the real flow is that  the 
jet path is deflected towards the direction of the ambient flow. A second characteristic 
feature is that the disturbance field of the deflected jet a t  a large distance from the 
orifice is dominated by a pair of contrarotating vortices aligned with the jet. A third 
characteristic feature is the highly turbulent nature of the flow, arising partly from 
the instability of laminar shear layers a t  the high Reynolds numbers typical of the 
practical occurrences and partly from the unsteadiness of the separation of the 
ambient flow from the jet surface. I n  view of the last of these features, and of the 
more familiar case of the aligned jet, it is clear that any detailed predictive method 
must be based on a flow model in which Reynolds stresses are represented. Valuable 
approaches on these lines are those of McGuirk & Rodi (1979) and Sykes, Lewellen 
& Parker (1986), who also reference other works in the field. Calculations of this kind 
are, however, of limited value in elucidating the flow mechanisms that are involved 
in the distortion and deflection process. In  principle, Reynolds stresses and viscous 
stresses could be set to zero in the algorithms used, but numerical instability is then 
likely to ensue unless substantial numerical damping, with dissipative properties, is 
present in the calculation. On the other hand, the success of inviscid models of three- 
dimensional flows involving concentrations of vorticity, from the wing theory of 
Lanchester and Prandtl onwards, invites attempts to explain the first two 
characteristic features on an inviscid basis. Many such attempts have been made, 
starting with the work of Chang (1942), and concentrating on the flow in planes 
normal to the centreline of the jet. These treatments have been able to account in a 
qualitative way for the deformation of the jet cross-section along its length, but 
relating the axial flow to the crossflow is more difficult, and they are unable to predict 
the deflection of the jet centreline. Moreover, for the fully three-dimensional flow 
near the jet exit a more elaborate treatment is clearly required. 

A further practical incentive to examine inviscid models of the jet in crossflow 
arises in the aeronautical context, where there is a need to take into account the 
interaction between the jet, the external shape of the aircraft and the ‘ground’, 
where the last may be part of the Earth’s surface, the superstructure of a ship, or the 
wall of a wind tunnel. Practical methods for such ambient flows are still based on the 
classical aerodynamic model of an inviscid fluid, with boundary conditions modified 
to take account of boundary-layer effects. Consequently, a jet model which can be 
incorporated into such a treatment of the ambient flow would be highly desirable. I n  
any case, it is important to know how much of the Characteristic behaviour of the jet 
in crossflow is predictable on an inviscid basis, and how much depends on the 
representation of tangential stresses. 

On the key question of the deflection of the jet, the results of the present 
investigation are not entirely conclusive. They show that the component of the 
ambient velocity along the axis of the pipe plays a crucial role. If this is zero, that 
is to  say if the pipe is perpendicular to the ambient flow, the deformation of the jet 
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is symmetrical fore-and-aft, there is no force on the jet, and there is no deflection of 
the jet, at least to the number of terms so far calculated. With a non-zero axial 
component of the ambient velocity, the jet deforms asymmetrically, there is a force 
on the cross-section of the jet, and the centroid of the jet cross-section is displaced, 
corresponding to a deflection of the jet. The deflection of the jet is downstream if the 
component of the ambient flow is in the same sense as the velocity in the pipe, i.e. 
if the pipe is inclined downstream. 

The mathematical problem is formulated in $2. Section 3 contains the first part of 
the solution, valid for distances of the order of a / &  from the orifice, and a summary 
of the results of the second part of the solution valid close to the orifice. Details of 
the latter are given in the Appendices. The results are discussed in more detail in 
§4* 

2. The governing equations 
The problem we address is that of the flow of an incompressible, inviscid fluid 

which emerges, with mean speed U,, from the orifice of a pipe of circular cross- 
section, radius a, lying along - co < z < 0 (an overbar denotes a dimensional 
variable). The jet emerges into a stream of similar fluid which has undisturbed speed 
U,(h2+e2)i ,  where the magnitude of h is unrestricted, but + 1 ;  the pipe is at  an 
angle tan-l(&/h) to the undisturbed stream direction (see figure 1). The flow is 
assumed to be steady and irrotational throughout. The undisturbed pressure outside 
the pipe is p ,  and within the pipe, far from its orifice, p-m. We assume that 

where 01 is a given constant, and p is the fluid density. This assumption of a small 
difference between the undisturbed jet and stream pressures ensures that the initial 
departure of the jet shape from a circular cylinder of radius a is small. 

Non-dimensional variables are introduced in which a representative length, 
velocity and pressure are taken as a ,  U ,  and pUi respectively. In  cylindrical polar 
coordinates ( r ,  6, x), where the centreline of the pipe lies along the negative axis of x 
and 0 is measured from its leeward generator, Laplace’s equation for incompressible 
potential flow is 

In (2.2) @ represents either the velocity potential of the outer streaming flow or of 
the inner jet flow which are respectively denoted by v and @. The boundary 
conditions require, a t  the pipe surface 

% = % = o  o n r = i ,  x < o ,  
ar ar 

and a t  the jet surface, denoted by F(r ,  6 ,  x) = 0, x > 0, 

V ~ I - V F  = V@.VF = 0 on F = 0. 

From Bernoulli’s equation the dimensionless pressure, inside and outside the jet 
respectively, is given by 
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and continuity of pressure a t  the jet surface then requires, using (2.1), 

( V T ) ~ - ( V @ ) ~  = h2-1+2(1-a)e2  o n F  = 0. (2.5) 

@ - x  asx+-co, r < l ,  (2.6) 

p - hx+er cos8. (2.7) 

Finally, the undisturbed conditions require that 

and in the outer flow, far from the pipe and the jet, 

3. Solution procedure 

as a consequence the outer solution, correct to O(e), is 
As a preliminary we note that a t  leading order the jet surface is simply r = 1 and 

cos8 for allx. (3.1) 

If, for simplicity, we take a = 0 then the solution (3.1), and the dynamic condition 
(2.5) require that the inner solution, for x > 0, takes the form 

( 3 4  
which in turn, from the kinematic condition (2.4), leads to a modified jet shape given 

r = 1 -e2x2 cos 28. (3.3) 

@ = x - e2xr2 cos 28, 

by 

Now, (3.2) and (3.3) are not correct in all their details, and not least because (3.1) 
is correct only to order e .  However (3.3) does indicate that this perturbation 
procedure will fail for x 9 1,  specifically when x = O(e-'). This indication motivates 
the choice of f = ex as a far-field variable, and we find it convenient to develop the 
solution in the far field before considering the solution close to the orifice, where 
x = O(1). 

3.1. The far-$eZd solution; f = 0 ( 1 )  

If we introduce the variable f = ex the governing equation ( 2 . 2 )  becomes 
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where V2 denotes the two-dimensional Laplace operator. Guided by (3.1)-(3.4) we 
expand the outer, stream potential pl, the inner, jet potential @ and the jet shape 
function F ,  as 

A6 
pl =-+eh{plll(r,6)+5rp12(r,6)+~2pl,3(r,6)+. ..}+ e3h{rp,,(r,6)+ ...}+..., (3.5) 

(3.6) @ = -+4jj12(r, 6)+52@13(r, 6 ) + .  . . } + ~ ~ f @ ~ ~ ( r ,  6 ) + .  . .}+. . . , 

F = r-1-6%(6)-6”f3(6)-5*f~(e)+ .... (3.7) 

6 

5 
€ 

Consider next the boundary conditions. We find it convenient to transfer the 
kinematic, (2.4), and dynamic, (2.5), conditions a t  F = 0, where F is given by (3.7), 
to conditions on r = 1. Thus, substituting (3.5)-(3.7) into (2.4), and ignoring terms 
that are smaller than O ( @ ) ,  we have 

~ 1 1 1 7  + 6 ( ~ 1 2 r  -2f2) + t2(fi V11rr +~)13r  - f i s ~ l l s  -3f3) = 0, (3.8) 

@12r-2f2+6(@13r-3f3) = O, (3.9) 

both evaluated a t  r = 1 ,  where the subscripts r ,  8 represent differentiation with 
respect to those variables. If we eliminate 2f2+3U3 between (3.8) and (3.9), then the 
kinematic boundary condition becomes 

Yllr  + 6(~)12r  - @ l z r )  + 62{913r -@I37 + 9(@127~11rr -@12er~l ls) l  = 0 at r = 1. (3.10) 

Substitution of (3.5), (3.6) into (2.5), and transfer of the boundary condition to 
r = 1 gives, for the pressure boundary condition, 

2(1--01) + ~ , 2 - - ’ ( p l ~ l r + p l ~ l B + ~ 1 2 )  

+ ~ ~ ~ 1 3 ~ h 2 ~ ~ 1 1 r ~ 1 2 r + 2 ~ 1 1 B ~ 1 ~ ~ + ~ 1 3 ~ ~  = 0 a t  r = 1. (3.11) 

We now determine explicitly the terms O ( E )  shown in ( 3 4 ,  (3.6) by substituting 
these expansions into (3.4) with (2.7), (3.10), (3.11) and equating to zero coefficients 
of successive powers of 6,  

The leading-order terms result in the following problem for plll : 

1 VZplll = 0, 
r 

h plllr = o a t  r = I ,  plll - - c o s ~  as r+  co.j with 

The solution for qll, already anticipated in (3.1), is 

The terms O(5) in (3.4), (3.10), and 0(1) in (3.11), now give, for pl12,Q12 

V2pl12 = v2@12 = 0, 

@12r - ~ ) 1 2 r  = 0, 

q12 - h2pl12 = CL - cos 28, 

with, a t  r = 1, 

(3.12) 

(3.13) 

(3.14) 
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where use has been made of (3.13). If we write 
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m m 

v12 = C a, r-" cosn8, pl2 = C a", rn cos no, 
n=l  n=o 

where due attention has been paid to conditions at infinity and r = 0 ,  then 
it is readily shown, by substitution into (3.14), that  a", = a,  a2 = -a", = (1 +A2) - l ,  
a, = a", = 0 otherwise, so that 

(3.15) 

The solution at this order is completed by determining the jet shape function f,(S) 
which, from (3.9), is given by 

1 
f2 (8)  = fi12,(r = 1) = -- + A2 cos 28. (3.16) 

Before we move to the next stage we make two observations. The first is that  (3.16) 
implies a symmetric deformation of the jet cross-section from its original circular 
shape, and the second that an increase in pipe pressure (a  > 0) results in an 
acceleration of the emerging jet flow by (3.15). 

We move next to the consideration ofcp,,,@,, which, from (3.4)-(3.6), (3.10), (3.13) 
and (3.15) satisfy 

together with, a t  r = 1,  
V2Cpl3 = V2fjj13 = 0, 

I (005 8 - COS 38). 
h 

@13 - h2P13 = lfh2 

If we again express the solutions in the form 

m 

4)13 = C b,rPn cosne, @I3 = C b,rn cosn8, 
12-1 n-0 

then it is a straightforward matter to show that 

with all other b,,6", E 0, to give 

The solution a t  this stage is completed by noting, from (3.9), that  

(3.17) 

(3.18) 

(3.19) 

The jet shape functionf3(0) in (3.19) shows an asymmetric distortion of the jet cross- 
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section. This asymmetry is associated with a corresponding asymmetry of the 
pressure distribution. The jet pressure p” is readily calculated from the inner solution, 
up to the point that we have taken it, as 

( r  cos 0 - r3 cos 38) . 

(3.20) 

So far as the terms O(s3)  in (3.5), (3.6) are concerned we simply note, by 

I r2 h 
cos 20 + 46 - 

( 1  + h2)2 
@-p-m = -e2(@12+26@13) = -E2 a-- { i + h 2  

substitution into (3.4), that val and @31 satisfy the equations 

V2v31 + 24713 = V2@31 + = 0. (3.21) 

It is a t  this point that the solution would involve functions that are not solutions of 
the two-dimensional form of Laplace’s equation. 

The series (3.5), (3.6) are valid in the far field; they fail in the neighbourhood of 
x = 0 since no account is taken in them of the presence of the pipe orifice. Written 
in terms of the original variable x we have 

Q, h x + € h ~ , , + € 2 h X ~ 1 2 + € 3 h ( X ~ ~ 1 3 + ~ 3 * ) +  ..., 
@ - x + E ~ x @ ~ ~ + E ~ ( x ~ @ ~ ~ + @ ~ ~ ) +  . . . .  

(3.22) 

Note that the coefficient of each power of e is a solution of (2.2), that of e3 by virtue 
of (3.21). The expressions (3.22) are the asymptotic forms that a solution, valid in the 
neighbourhood of the pipe orifice, must take as x +  m. We now consider such a 
solution. 

3.2. The near-jeld solution: x = O(1) 

Q, = hx+ehrpll(r, 0)+e2$(r ,  0,x), 

@ = x+e2&(r, 0, x). 

Correct to O(e2)  we write 

The unknowns +, & each satisfy (2.2) together with 

V + N O  a s r + c o ;  

v+,v$-o a s x - t - a ;  

and, as required by matching, 

i & N ax-- + h2 xr2 cos 20 

The condition a t  the surface of the pipe gives 

asx+co.  

(3.23) 

(3.24) 

(3.25) 

(3.26u, b )  

(3.27) 

Finally the kinematic and dynamic boundary conditions a t  the jet surface require, 
respectively , 

( 3 . 2 8 ~ )  
* a t r =  1 ,  z >  0, 

(3.28b) 

+, - = 0,  
$% - A$, = a - cos 20, 
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where a t  this order no additional terms arise from the transference of boundary 
conditions to r = 1. 

It proves convenient to separate $, 4 into symmetric and asymmetric parts. Thus 
we write 

(3.29 a )  

We consider first the symmetric problem for tlro, &o and we note in particular, from 
(3.263) and (3.283), 

So - ax a s x + c o ;  $ o x - ~ ~ o x  = a a t  r = I ,  x > 0. (3.29 3) 

The potential problem for the outer and inner flows, with the conditions (3.24)-(3.28) 
has been solved by the Wiener-Hopf technique, the not inconsiderable details of 
which are presented in Appendix A. Here we summarize the main features of the 
solutions that have been obtained. 

(i) x < 0, r < 1 
In this region we have, from (A 37), 

(3.30) 

where the physically irrelevant constant C, has been omitted and the coxstants p n  
are the solutions of J,(,u) = 0, where J ,  is the Bessel function of order one. The 
function K ,  has not been evaluated explicitly but is determined through (A 23). One 
of the main features to note of the solution (3.30) is that the disturbance to the 
uniform flow within the pipe decays very rapidly with distance from the orifice. The 
decay is dominated by the factor e-P1Ix1 where ,ul x 3.86. 

(ii) x 2 0, r < 1 
The perturbation potential within the jet is given by (A 38) as 

(3.31) 

where the function K- may be determined through (A 23), and KO is a modified Bessel 
function of order zero. The behaviour of go in (3.31) as x +  00 has been determined 
by an application of Laplace’s method to give 

(iii) r 2 1, all x 

For the region external to both the pipe and the jet we have, from (A 39), 

(3.32) 

(3.33) 

Again it is of interest to determine the far-field behaviour of $,. This is accomplished 
by an application of the method of steepest descents which shows that 

(3.34) 
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It is interesting to note that whilst the disturbance engendered by the pipe orifice 
decays exponentially within the pipe, see (3.30), it decays only algebraically outside 
the pipe where it displays a source-like behaviour. 

We consider next the asymmetric part of (3.29) namely $, and &,. We note in 
particular from (3.26) and (3.28b) that 

I (3.35) 
xr2 ~ 0 ~ 2 8  as x+ 00 

A x  1 , 2cos2e, $,--- 
$ 2 - l + h r  1 + A 2  - 

and $2x-h$2x = - ~ 0 s 2 8  at r = 1, x > 0. 

The details of the method of solution for $,,$, are given in Appendix B, here we 
summarize the main features of the solution. 

(iv) x < 0, r < 1 
In this region we have, from (B 22a), 

where If, may be inferred from (B 15), A is a constant defined Appendix B and the 
52, are the positive zeros of J;(52), where J ,  is the Bessel function of order two. As 
x+ -a in the pipe we see from (3.36) that 

l / 2 (  1 +AQ,)J,(Q, r )  e-D1lsl cos 28 
(1 +h2)k2~~+(iSZ,) J:(SZ,) , x+-0O, (3.37) $2P> 8,x) - 

where 52, x 3.05. Again we note a very rapid decay of the disturbance in the pipe. 

( v ) x > O ,  r < l  

In this jet region the perturbation potential may be written, see (B 22b), as 

(3.38) 

where I?@) is defined in (B 19), and IT- may be inferred through (B 15). For large x 
the integral in (3.38) may again be estimated using Laplace’s method to give 

(3.39) 

(vi) x < 0, r 2 1 
Outside the pipe, in x < 0, we have from (B 23a) 

where K ,  is a modified Bessel function of the second order. From (3.40) we may infer, 
again using Laplace’s method, that for fixed r ,  and as x - t  - CQ, 

h(r4 + 1) cos 28 
a s x - t - a .  

16r2x2( 1 + /I2) $2(., 8,x) - 
fvii) x 2 0. r 2 1 

(3.41) 
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Finally, outside the jet in x > 0 the perturbation potential is given by, see (B 23b), 

\ 

iK2( - ipr) 
12(ip) &( - ip) + h2K,( - ip) Ik(ip) 

} K-( - ipFj(ip) e-Pz + (1 -AP) dP> 

(3.42) 

where I, is a modified Bessel function of the second kind. The far-field, asymptotic 
form of (3.42), valid as x+ 00 with r fixed, is obtained by Laplace’s method as 

This completes the discussion of the near-field solution which describes the 
interaction in the neighbourhood of the pipe orifice. 

3.3. Jet force and displacement 
Before leaving this section we employ the far-field solution of $3.1 to calculate the 
force on, and displacement of, the jet. 

In the crossflow direction the force acting, per unit length of the jet, is to lowest 
order 

using the expression for p, = given from (3.20). A suitably defined force 

(3.44) 

where p = € / A ,  and is the inclination of the jet pipe to the undisturbed outer stream 
direction when this is small. 

Associated with this force is a displacement of the jet that  we estimate as follows. 
If we write the jet surface as r = 1 +f(E,  O ) ,  where f may be inferred from (3.7), then 
the area A of the jet cross-section is given by 

A = 2 r r ’ ’  r d r d 0  = 7c+O(E4). 
0 0  

We define the moment of this area as 

E3 + O(E”3 
2 7th 

r2 cos 0 dr  d0 = - hA = 2 r r i f  0 0  
3 (l+h2)2 

from which we infer that  the displacement of the jet centroid is given by 

(3.45) 

4. Discussion 
The dominant features of the solution obtained are easily explained in qualitative 

terms. The crossflow around the nearly circular jet induces low pressures on the sides 
of the jet and high pressures fore and aft. The jet contour responds by expanding 
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laterally and contracting in the fore-and-aft direction, preserving its area, by 
continuity. This corresponds to the approximately elliptic form of the jet cross- 
section at  leading order, as given by (3.16) in (3.7). The pressure within the jet 
adapts, with an increase in axial speed along the sides and a reduction fore and aft, 
as given by (3.15) in (3.6). In the absence of a component of the ambient flow parallel 
to the axis of the pipe, h = 0, the next terms in the surface pressure (3.20) and jet 
shape (3.19) vanish. In the presence of an axial flow, with h > 0, we can regard the 
jet as a solid body at an angle of incidence to a uniform stream, and apply the ideas 
of slender-body theory. The growth in the lateral dimension or 'span' of the elliptic 
cross-section gives a 'lift' force in the direction of the crossflow. The associated 
surface pressure distribution has suction peaks towards the lateral extremities of the 
leeward face of the jet, and these peaks draw out the surface into lobes, as given by 
(3.19) and illustrated in figure 2. To recover the correct force, as given by (3.44), from 
slender-body theory, this further deformation must be represented. 

The transverse 'lift ' force acting on the jet produces the centripetal acceleration 
of the fluid inside the jet required to deflect it towards the direction of the ambient 
flow. Working for the moment in dimensional quantities for clarity, we have from 
(3.44) and (3.45): 

for the force per unit length of the jet 
for the mass per unit length of the jet 
for the curvature of the jet centreline 

4xapUi hez[/( 1 + 
xa'p 
4he2t/a( 1 + A')' ; 

and so the elementary centripetal acceleration relation is recovered. 
Having established the consistency of the major features of the solution, we turn 

to a more detailed discussion, considering first the role of the parameter a. To obtain 
an indication of this role, we first look at the axisymmetric jet given by allowing E 

to tend to zero and a to tend simultaneously to infinity in such a way that a = ole2 

remains finite and small compared with unity. The jet shape is then still a small 
perturbation of the circular cylinder defined by the pipe. Writing (2.1) in non- 
dimensional form gives, in this limit, 

Away from the immediate neighbourhood of the orifice, the only disturbance 
remaining comes from GI2 and expresses the fact that the non-dimensional jet speed 
is greater by than the speed in the pipe. As a result, the non-dimensional pressure 
in the jet is less by a than the pressure p- ,  upstream in the pipe and therefore, by 
(4.1), equal to the ambient pressure. These changes in speed and pressure, and the 
associated change in diameter required by continuity, take place on the lengthscale 
of the pipe diameter, and are given in detail by (3.30)-(3.34). We note in passing that 
this behaviour depends on the magnitude h of the coflow, except inside the pipe. 
However, the eventual effect is the equalization of the pressures in the inner and 
outer flows. It is, in fact, hard to imagine physical circumstances in which this 
equalization would not be accomplished inside the pipe, so that the appropriate value 
of di would be zero. The presence of crossflow complicates the situation, but the 
following argument leads to the same conclusion. If we take the average of the 
pressure in the jet away from the neighbourhood of the orifice, as given by (3.20), we 
find p-,--p",,,, = a ~ ' .  Therefore, once the pressure in the jet has adjusted to 
ambient conditions, its mean level is lower by ac2 than the level upstream in the pipe. 
Again, it seems likely that this pressure adjustment would propagate up the pipe in 
most physical situations, so that a = 0 would be the appropriate value. 

p-,-p, = a. (4.1) 
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Now we consider the behaviour a t  the orifice lip, where some form of Kutta 
condition should be satisfied. However, the behaviour of the solution quoted a t  the 
end of each Appendix indicates that the slope of the jet surface tends to infinity as 
the lip is approached. This result is inconsistent with the initial transfer of the 
boundary conditions to the cylindrical surface, and it indicates a non-uniformity in 
the near- field expansions. Further analysis suggests that this non-uniformity arises 
on a lengthscale of (18, and that it can be removed by solving a local problem which 
is two-dimensional but nonlinear. It is hoped to address this problem in a subsequent 
paper. 

Setting this dificulty aside, we turn to a discussion of the effects of the parameter 
A ,  for the case 01 = 0. We have already remarked that, in the absence of a coflow, 
A = 0, there is no force on the jet and no deflection of its centreline, to the order 
calculated. The disturbance velocity field near the orifice is always symmetric fore- 
and-aft to the order calculated, since the angular coordinate enters (3.36)-(3.43) as 
a factor cos28. For h = 0, the terms given so far show the shape is symmetric fore 
and aft on the larger scale also. Moreover, the simplification introduced by setting 
h = 0 makes it practicable to calculate a further term in the expansion (3.7) for the 
jet shape, namely 

f 4 (el = a-3 cos2e+h cos4e. (4.2) 

The jet shape therefore remains symmetric fore and aft beyond the initial elliptic 
deformation. A further simplification is that the disturbance field outside the jet and 
pipe in the immediate neighbourhood of the orifice vanishes, to order e2, when 
h = 0, as shown in (3.33), (3.40) and (3.42). This is consistent, in that the disturbance 
inside the jet is 0 ( e 2 ) ,  so the shape change will be O ( 2 )  ; this shape change in a coflow 
of speed h gives a disturbance proportional to he2, but in the crossflow of speed E the 
disturbance is O(e3).  

On the other hand, the disturbance field inside the pipe, given by (3.30) and (3.36) 
exhibits rapid exponential decay regardless of the value of A. This suggests that a 
similar behaviour may be expected when a cylindrical jet exhausts through a circular 
orifice in an infinite plane. 

When h > 0 it is meaningful to write E = PA, as in $3.3, so that the pipe is inclined 
at an angle tan-lp to the ambient flow. The treatment is valid both for h of order E 

and /3 of order unity and for h of order unity and /? small, in which case p is the 
inclination of the pipe to the flow. In  the former case, in which the ambient speed is 
small compared with the jet speed, it is consistent to neglect h2 compared with unity, 
thereby simplifying the formulae considerably. For example, both the force per unit 
length of the jet and the jet deflection, a t  a fixed distance x from the orifice, become 
proportional to he3, according to $3.3. Hence if h2+e2 is given, corresponding to a 
specified ambient speed, the maximum force and deflection arise when e2 = 3h2, i.e. 
the pipe is inclined at 60" to the ambient velocity vector. On the other hand, if the 
coflow is comparable with the jet speed, so that p 6 1, the inclination of the pipe will 
be small and approximately equal to p, and the force and deflection increase like 
p3 for a given ambient speed A. A numerical example calculated for h = 0.5, E = 0.1 
is shown in figures 2 and 3. Figure 2 shows the cross-sectional shapes of the jet, as 
given by (3.7), (3.16) and (3.19), for distances 1, 3, 5 and 7 pipe radii downstream of 
the orifice. At x = 1, the section is almost circular, a t  x = 3 it is approximately 
elliptic, at x = 5 it is kidney shaped, and a t  x = 7 it has taken on a lobed form. By 
x = 7, the assumption of an approximately circular cross-section is clearly inadequate 
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FIGURE 2. Cross-sectional shapes of the jet a t  z = 1, 3, 5, 7 for h = 0.5, E = 0.1. 

and it is unlikely that the present approach would be even qualitatively reliable 
further from the orifice. The results illustrate the difficulty of defining jet deflection 
in a realistic way. At x = 7, (3.45) shows that the centroid is deflected 0.073 radii 
downstream, but the mean position of the jet boundary in the plane of symmetry is 
just twice as far upstream, and the 'centre of the lobe' is judged by eye to be about 
twice as far again downstream. 

In  figure 3 are shown the corresponding distributions of non-dimensional pressure 
on the jet boundary, as given by (3.20). These are plotted round the circumference 
of the undeflected jet and normal to its circular boundary. The interaction between 
the shape and the pressure distribution is easily visualized. The surface pressure in 
the plane of symmetry is independent of I\: and given by 

(4.3) 

This may be compared with the level upstream on the pipe in the same plane, 
corresponding to stagnation of the crossflow : 

p - p ,  = &.". 

Thus we see that the pressure falls by h2e2/(1 + A 2 )  in the plane of symmetry near the 
orifice. 

If h = 1, so that the velocity of the coflow is equal to that in the pipe, we have a 
special case. In  the absence of crossflow, there would be no jet. With crossflow, a 
vortex sheet remains and the solution resembles the vortex wake of an annular wing 
of vanishingly small aspect ratio. In  particular, cpI3 = 0, by (3.18), and, by (4.3), the 
pressure on the jet in the plane of symmetry is the same as the undisturbed pressure 
of the ambient flow. The bound vortex lines in the pipe lie along its generators, but 
a glance at (3.16) shows that the 'trailing ' vortex sheet contains a circumferential 
component as well. 
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FIGURE 3. Je t  surface pressure, plotted normal to the section of the undisturbed jet a t  
z = 1 , 3 , 5 , 7 f o r A = 0 . 5 , ~ = 0 . 1 .  

The behaviour of the vortex lines, defined as curves of constant cp-@, for the more 
general case with h = 0.5, c = 0.1 illustrated previously is shown in figure 4. The 
vortex lines are drawn on the surface of the undeflected jet, half of which is then 
unwrapped into the plane of the paper. Superimposed on the vortex lines are the 
mean streamlines, i.e. the streamlines of the mean of the surface velocity fields inside 
and outside. Since there is a difference of total pressure across the sheet, the vortex 
lines and mean streamlines are different. We note that the vortex lines become more 
closely aligned with the jet axis as the distance from the orifice increases, and that 
they lie closer together. This represents the formation of the vortices aligned with the 
jet axis which are a feature of the development of the jet in crossflow. 

When h > 1,  the flow resembles a wake rather than a jet, with lower axial 
velocities inside than out. For a given pipe inclination /3, both the force and the 
deflection a t  a given distance from the orifice are proportional to h4/(1 + A 2 ) 2 ,  from 
(3.44) and (3.45). Both therefore increase monotonically with A,  as the jet or wake 
offers less resistance to the ambient flow. However, to maintain the assumptions of 
the treatment, /3 must become smaller as h increases. By supposing U ,  + 0 as h -+ co, 
keeping hU, fixed, with /3+ 0, we find the solution corresponds to a uniform flow of 
speed hU, surrounding fluid a t  rest within an infinite circular cylinder. 

So far we have assumed h 2 0. If a negative value of h is introduced, the jet is 
apparently deflected upstream. It may be that a local behaviour of this kind is 
possible, but we must reject the idea of a jet penetrating to infinity against the 
crossflow. Although the problem has been formulated as a pair of potential problems, 
the matching condition requires the formation of a vortex sheet. Consequently, the 
allowable solutions must be a t  least weak solutions of the Euler equations governing 
inviscid rotational flow. For these equations, the streamlines are characteristics for 
the propagation of vorticity, so that in a properly posed problem vorticity must be 
specified upstream, or originate a t  a solid surface, and emerge downstream. It is of 
some interest to see how the derivation of the force on the jet from slender-body 
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Leeward 

FIGURE 4. Vortex lines and mean streamlines in one half of the unwrapped surface of the jet 
for h = 0.5, B = 0.1, 0 6 z < 7 ,  0 < 0 < R .  In  this figure the scales are equal. 

theory fares for a jet directed against the coflow. The jet now corresponds to a body 
a t  incidence with approximately elliptic cross-sections and with span decreasing in the 
direction of flow. I n  the absence of separation, the local lift is then negative, as the 
present treatment suggests. However, the overall force on the body, regarded as 
terminating in a circular base at  the jet orifice, is positive. Once again then, an 
inconsistency arises if we try to extend the local solution to a global one. 

Finally, we must return to our initial question: how far can the behaviour of the 
jet in crossflow be explained in inviscid terms? We have shown that, if the jet is 
initially directed downstream in the ambient flow, inviscid mechanisms produce a jet 
deflection, a jet distortion, and an axial vorticity increase qualitatively similar to 
those observed. I n  view of the central assumption that the jet remains close to a 
circular cylinder, it is clearly impossible to carry the present treatment far enough 
to warrant making quantitative comparisons. If the jet is initially directed upstream, 
no meaningful conclusion can be drawn from the present treatment. If the jet 
emerges exactly normal to the ambient flow, the present treatment predicts a 
growing distortion which eventually violates its assumptions, but no deflection. On 
the other hand, it does suggest that if a small downstream deflection should arise, 
inviscid mechanisms would increase it. The next step appears to be the application 
of a panel, or boundary-integral method, to seek a self-consistent global solution of 
the inviscid flow problem. 

This work has been carried out with the support of the Procurement Executive, 
Ministry of Defence. The authors are grateful for useful discussions with Professor 
D. W. Moore and Dr C. C. Lytton. 

Appendix A 
In  this Appendix we outline the solution of the problem for $o(r,x),  &,(T,x) 

introduced in (3.29a). Both $o and go are harmonic functions which satisfy the 
boundary conditions set out in (3.24), (3 .25) ,  (3.27), (3.28a) and (3.29b). 

It is first convenient to  introduce new dependent variables 

I - 
@O(r, X) = $ o ( ~ ,  2) -ax, T < 1 ; !Po(., X) = k O ( r ,  x), Y > 1 .  (A 1 a ,  b )  
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Both &o and Yo are harmonic functions which, from (3.24)-(3.27) and (3.293), 
satisfy V 6 0 +  -ai as x+ -co, GO+O as x+ co for r < 1, (A 2a,b) 

together with, at r = 1, 

(A 2 d ,  e , f ,  9 )  

In order to exploit the Wiener-Hopf technique the strategy that we now adopt is 
to solve, not a harmonic problem with conditions (A 2), but a Helmholtz problem in 
which 6o and Yo satisfy 

A ~ & , - S V ~  = 0 ,  r < 1; A ~ Y ~ - s ~ Y ~  = 0, r > 1, (A 3% b)  

where 6 is a constant such that 0 < S 4 1 and A 2  = V2+a2/ax2 is the three- 
dimensional Laplace operator. The equations (A 3) are to be solved subject to the 
conditions (A 2 ) ,  but with the far-field condition (A 2a) replaced by &o N a e-8x as 
x+ - co, where u is a constant, to be chosen such that in the limit &+ 0 the solution 
of the Helmholtz problem reduces to that of the original harmonic problem. Now, it 
can be shown that the far-field behaviour of h0 and Yo gives 

where a,, b, and c1 are constants, and R2 = r 2 + x 2 .  To remove the exponentially 
growing part of &o as x+ - 00 we introduce Go such that 

1 

Qo(r,  x) = ao(r, x) -a e-6x, (A 5a)  

(A 5b) 

(A 5 4  

with = 0, - 

a @ O  

ar 
and - = 0  o n r = l ,  x < O ,  

We note that it may now be shown that 

- A e-'lXl, 1 yOl - B e-61xJ as 1x1 + co (A 6) 

for some constants A and B. The problem posed for Qo(r ,x )  and !Po(r,x) in the 
foregoing is a Wiener-Hopf problem. To solve this we first define the Fourier 
transform of Go as 

p(s, r )  = Go(r,  x) eisxdx, (A 7) rm 
with a similar expression for the transform 11. of Yo. In  (A 7)  s = g+i7 is a complex 
variable, and it can be shown from the condition (A 6) that both and p are analytic 
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functions of s in the strip R = {s : - 6 < r < S}. We also define the half-range Fourier 
transforms 

p+(s, r )  = djo(r, x) eisx dx, p-(s, r )  = Oo(r, x) eisxdx, (A 8a, 6) 

with similar expressions for $+(r,  x) and $-(r ,  x), the half-range transforms of 
Y o ( r ,  x). We may deduce, upon using (A 6),  that p+ and $+ are analytic in the region 
R+ = {s: r > -S}, whilst p- and $- are analytic in R- = {s: r < S}. To ensure that 
djo and Yo have, a t  worst, an integrable singularity as x +  + O  we also require rp+, 
$+, 9- and $- to decay algebraically as Is1 + 00, in R+ and R- respectively. We note 
the relations 

(A 9a, b )  

Consider now the solution of (A 3b) that is appropriate to the region r > 1. The 

s: @, 

p(s, r )  = p+(s, r )  +p-(s, r ) ,  $(a, r )  = $+(s, r )  + $-(s, r )  ; S E  R. 

full-range transform of (A 3b) gives 

where y(s) = (s + is)$(, - iS)t. (A 11)  

We make y(s) single-valued by introducing branch cuts a t  s = &is; these are chosen 
to lie on the imaginary axis outside the region R. We choose the branch of y(s) that 
is real and positive on the real s-axis from which it follows that Re ( y )  > 0 in the 
entire cut plane. With y(s) so defined the solution of (A 10) that remains bounded in 
R as r+Go is 

where K O  is a modified Bessel function of order zero, and A(s )  an, as yet, unknown 
function. Before we consider the boundary conditions a t  r = 1 we introduce the 
notation cp+ = p+(s, l),  v; = ++(s, l)/ar, etc. The half-range transforms of conditions 
(A 2 d )  and (A 5 c ,  d, e )  give 

(A 12) $ ( s , r )  = &)K,(yr); S G R ,  

vL = VL = 0 ;  

$;-AT; = 0;  

scR-, (A 13a, b )  

S E R , ,  (A 13c) 

* S E R , .  +- i{h Yo( 1 , O )  - djo( 1 , 0)) ad 
S s(s + is) ' w+-v+ = (A 13d) 

Since $+ and v+ must both be analytic in R+ we must remove the pole a t  s = 0 by 
choosing hYo(l,O)-djo(l,O) = a  so that (A 13d) becomes 

W+-T+ = s+is ia ' , SER,. 

Also, eliminating A($)  from (A 12), and using (A 9 b ) ,  we have 

(A 13e) 

We now consider the solution in r < 1. The appropriate solution of the full-range 
transform of (A 5 b )  in r < 1 is given by 

p(s, r )  = B(s) &(yr)  ; s E R, (A 14) 
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where lo is a modified Bessel function. From (A 15) and its derivative evaluated on 
r = 1 we have, when B(s) is eliminated, and use is made of (A 9a) ,  

(A 15) with (A 13) now provides us with a total of six relationships between the 
eight unknowns yi, y i ,  $&, $:. The analyticity properties that  are required of these 
unknoi\n functions make the system determinate provided that (A 13) and (A 15) 
Can be rearranged to obtain a Wiener-Hopf equation. 

To proceed. we first eliminate $+, $C.;, $L and 'pL from (A 13f) and (A 15), making 
use of ( A  13a-c,e) to give 

If we now subtract (A 16a) from (A 16b) we find, after some manipulation, 

sER, 

It can be shown that K ( s )  is analytic in R and, with the constant h not far from unity, 
an application of Rouchk's theorem shows that K is non-zero in the entire cut plane. 
With these properties for K ( s ) ,  (A 17)  is a Wiener-Hopf equation for q+ and q- 
defined in the strip R. 

Consider the kernel K ( s )  in (A 17), which is defined in (A 18c). It is readily shown 
that K is an even function in the cut plane and that 

Our aim now is to find functions K+(s) and K-(s) which are, respectively, analytic and 
non-zero in R+ and R- such that 

for each s in R. To accomplish this we first write 

where the branch of the logarithm in (A21)  is chosen such that F(s)+O as 
Re ( s )  + 00 in R, which also ensures that F(s )  --f 0 as Re ( s )  --f - ca in R since y(s) K ( s )  
is an even function of s in R. The Cauchy integrals can be used to define F+(s), F-(s) 
as 

where C+, C- are contours which each run from 6 = - co to = + 00 in R ;  C, passes 
below the point 5 = s whilst C- passes above that point. It may be shown that F+ and 



Jet in crossJlow 177 

F- are analytic in R+ and R- respectively, and in terms of them the functions K ,  and 
K- in (A 20) are given by 

(1 + h2)+ exp {F+(s) ++xi} 
(s + id); 

K+(s) = 

(1 + A,); exp {F-(s) -$xi} 
K J s )  = ; SER- .  

(s - id); 

It is readily shown from (A 22) and (A 23) that 

where PI and P2 are constants. With K(s)  defined as in (A 20) we now rewrite (A 17) 
as 

J+(s)  = J - ( s ) ;  S E R ,  (A 25) 

From (A 26) i t  may be seen that J+ and J -  are analytic in R+ and R- respectively 
with tJ+(s)l + O ,  and IJ-(s)l = o(Is1:) as Is1 + 00 in R, and R- respectively. If we now 
define J ( s )  = J + ( s ) ,  S E  R, then since, from (A 25)' J- (s )  is the analytic continuation 
of J+(s)  into RI, J ( s )  is an entire function with lJ(s)l = o(Is1;) as Is1 + CQ. It follows, 
using Liouville's theorem, that J ( s )  = a, where a, is a constant. If we insist that  our 
solution has the least possible singular behaviour a t  the pipe orifice, then we require 
r+, 7- to decay as rapidly as possible as Is1 + co. Thus a, = 0 and (A 26) yields 

(A 27a) 

(A 27 b )  

from which we may deduce that Jy+(s)l - bllsl-+ and I~,-(s)l - b,lsI-' as Is1 + 00 in R, 
and R- respectively, where b, and b, are constants. 

We are now in a position to complete the solution for 6 + 0. If we make use of 
(A 12), (A 13), (A 14), (A 16b) ,  (A 18), (A 27), and the Fourier inversion theorem, we 
find, after some manipulation, that 

(A 28) 
ia I , (yr)  ePiszds 

2xK(-id) -m K+(s)yI;(y)(s+is) ' 
@,(r, 5 )  = - . r < l ,  

and 

From (A 28) and (A 29) it is easily shown that the condition AY,(l,O)-@,(l, 0) = a 
is satisfied, which provides a useful check on our solution a t  this stage. 
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We next consider in greater detail the solutions (A 28) and (A 29) for 6 $; 0. First 
we address (A 28) in x < 0. It can be shown that the integrand decays exponentially 
as Is( + 00 in the upper half-plane, and since K+(s) is analytic and non-zero in R+ the 
only singularities of the integrand in upper half-plane are those of 

Since g is an even function of y it is continuous and analytic across the branch cuts 
for y in the s-plane, and its only remaining singularities in the upper half-plane are 
a t  the roots of y(s ) Ik{y(s )}  = 0. This equation has a countably infinite number of 
roots, corresponding to simple zeros, in the upper half-plane, a t  s = s, = i(pk + a2);, 
n = 0,  1,2 , .  . . . Here the constants pn are the positive zeros of J,(,u), where J ,  is the 
Bessel function of the first kind of order one. For x < 0 then, the integral (A 28) is 
evaluated by deforming the contour of integration into the upper half-plane, and 
using the residue theorem, to  give 

r < l ,  x < O .  (A31) 

Now consider the solution (A 28) in x > 0. It is convenient to use (A 18c) and 
(A 20) to write (A 28) as 

e-isx ds. (A 32) -K-(-i6) -ds-- - 1 s+i6 27c -,s+i6 

e-isx 

Note that in (A32) we have subtracted, for convenience, the simple pole of the 
integrand of (A 28) a t  s = -is. The first integral in (A 32) can now be expressed in 
a more convenient form by deforming the contour around the branch cut in the lower 
half-plane, whilst the second integral is readily evaluated via the residue theorem. 
After considerable manipulation we have 

a I,{ir(p)r} r(p) K-( - ip) e-ps 
‘) = 27cK-( -id) J8 P-6 

where r(p) = (p + S)i(p - 6);. 
We now turn our attention to the solution (A 29) for r > 1, with 6 $; 0. The 

expression (A 29) is in fact a convenient form for the solution. With the integration 
taking place along the real axis we write s = a and then, with y ( a )  = (a2+S2)i we 

This completes the solution for 6 $; 0. Our remaining task is to recover the solution 
of the original harmonic problem via an appropriate limiting process in which 6+0. 
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First, we consider the behaviour of K+(s), K-(s)  as S+0. It can be shown that both 
K+ and K- remain bounded as S+O unless Is1 + 0 also. For 8, Is1 4 1 we have the 
limiting behaviour 

+ C, uniformly as 6, Is1 + 0, (A 35) 
i d 2  i d 2  

s-iS 
where C, and C, are constants that have not been eyaluated explicitly. 

For the solution of the original harmonic problem Go is required to  satisfy the far- 
field condition V&n + - ai as x + - cn in the limit S - t  0. For non-zero S we have, from 

K+(s) - s S i S f C , ,  K-(s) - -- 

(A 5a) and (A 31) 

U (.( - is) e-8% - esx }+Ex asx-t-cn,  (A36) 
'0(r7x) - K-( -3) 2S2K-( -2) 

where Ex denotes terms that remain exponentially small in the limit x+  - 00 as 
6 + 0. If we now expand the asymptotic expression (A 36) for 6 4 1, making use of 
(A 35), we see that the choice a = 01/26 gives, in the limit S = 0, 

Go(r,x) - - a x + 2 / 2 a ~ , + ~ ,  asx+-cn 

as required. With this value of a the solution of the original harmonic problem is now 
determined by taking the limit 6 + 0  in (A 31), (A 33) and (A 34), making use of 
(A 35). 

Consider first the solution in r < 1. For x < 0 we have from (A 31), (A 5a) and 

Similarly we obtain the solution in x > 0, via (A 33), as 

K-(ip) J,(pr){KA(ip) +Kh( -ip)} e-px d p  
+ax, {A2+ (1-h2)ipJo(p)K;( -ip)}{A2-(l-A2)ipJo(p)K~(ip)} 

x > O .  (A38) 

For the solution in r > 1 we find, from (A 34), 

Finally in this Appendix we determine the asymptotic form that the solutions 
(A 37)-(A 39) take in the far-field limit. From (A 37) we have immediately 

From (A 38), estimating the integral for large x using Laplace's method, and noting 
that the integrand takes the value x / 2 / 2  in the limit p+O, we find 

In r > 1 it is appropriate to  consider the asymptotic form of the solution (A 39) in the 
limit ( r 2  +x2)$+ 00. The integral may be estimated in that limit, via the method of 
steepest descents, as 
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In obtaining +o,Fo we have chosen the solutions that exhibit the least singular 
behaviour a t  the lip of the cylinder as x + 0 + .  An examination of (A 31), ( A  13c, e ) ,  
in the limit as S + 0, shows that this choice leads to the following on r = 1 as x + 0 + : 

where yo is a constant; 

- _ _  a’o bounded. ax ’ ax 

Consequently we have lV+ol, lV&,l - yoax-: on r = 1 as x+O+. 

Appendix B 
In  this Appendix we turn to the asymmetric components +2,&2.  These are 

harmonic functions with boundary conditions set out in (3.24), (3.25) and (3.35). We 
first write 

8, x) = $ z ( r ,  x) cos 20, &2(r, 8, x) = &(r, x) cos 20, 

and then introduce the new dependent variables 

The far-field conditions satisfied by &2, Y2 are 

- xr2 

,. AX 

Qi, N __ 
1 +A2 

Y, - - 
(1 + h2) r2 

asx+-co ,  Qi2+0 asx+co, r <  1, (B3u,b)  

asx+-co ,  Y2+0 

with the remaining conditions, on r = 1, given as 

as x +  co, r >  1, 

As in Appendix A, in order to emplqy the Wiener-Hopf technique, we solve a 
modified Helmholtz problem in which Qi, and Y2 satisfy 

4 -  
r2 

A 2 6 2 - - Q i 2 - S 2 6 2  = 0, 

4 -  
r2 

A 2 Y 2 - - -  Y2--S2Y2 = 0, 

r <  1, 

r >  1, 
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This modified problem also requires a modification of the boundary conditions 
(B 3a, c ) ,  (B 4a,  b) which become, respectively, 

(B 6a) 

and 

on r = 1 in x c 0. Note that the original boundary conditions are recovered in the 
limit &-to. To complete the formulation of the problem it can be shown that as 
X+co 

where d, and d, are constants. 

functions cDZ,Y2 such that 
The exponentially growing parts of (B 6a ,  b) are removed by introducing the 

e-6X i n r <  1: 
r2 

@2 = 6 e + 2 S ( l + A 2 )  

,. 

i n r >  1. (B 8b) Y, = Y,- h e - 8 ~  

2S( 1 + A,) r2 

Equations (B 5a,  b) are satisfied by Qi,, Y, respectively whilst from (B 4 d )  and 
(B 7 a ,  b) we have 

o n r = l  i n x > 0 ,  (B 9a) 
ay aQi 1 
ax ax 2 

h 2 - 2  = - e-62 

Furthermore it may now be shown that 

where A,,  B, are constants. 
Since (B 10) ensures exponential decay the Wiener-Hopf technique may be 

employed. The full-range and half-range Fourier transforms of @, and Y2 are defined 
as for the corresponding quantities in Appendix A. Again, full-range transforms are 
analytic in R whilst ' + ' and ' - ' transforms are analytic in R, and R- respectively, 
with all transforms exhibiting algebraic decay as 1st + 00 in the appropriate domain 
of definition. 

If we follow the procedures adopted in Appendix A we obtain, for the full-range 
transforms p2, $, of G2 and Y,, 

where I 2  and K ,  are modified Bessel functions of order two and A ( s ) ,  B ( s )  are, as yet, 
undetermined functions. 
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If we transform the boundary conditions (B 4c), (B 9) and eliminate A(s), B(s) ,  the 
following Wiener-Hopf equation results : 

where 

and 

S € R ,  
i X ( s )  + 

26(s + is) (1 + A') 6(s - is) ' 
R(s )  q+ +q- = 

Again, for h close to unity, an application of RouchB's theorem shows that K ( s )  is 
non-zero in the entire cut s-plane. 

The solution of the Wiener-Hopf equation is given by 

In  (B 14) x+(s ) ,  i?-(s) are the multiplicative factors of 
expressed, through the Cauchy integrals, as 

(1 +h2$ exp{+ani+F+(s)} - 

( s k i @  K,(s)  = 

~ E R - .  

the kernel R(s) and may be 

where 

with the contours of integration C+, C- as in Appendix A. 

the Fourier inversion theorem. 

half-plane to give : 

We may now obtain the solutions in r p 1 for 6 -+ 0 by making use of (B 14) and 

For r < 1 the solution in x < 0 is obtained by deforming the contour into the upper 

1 

12(iQn r )  e(Q;+82)e 

7 r2 eJX 
' z ( r ' x )  = 2 ~ ( 1  2x-(-i8){(1;22,+62);+6) 

forr  < 1 i n x <  0, (B 17) 

For x > 0 the solution is obtained, by deforming the contour around the branch 

1 K+ (is) - 
(1 +A*){(.Q; + P ) t - 6 }  K+{ilQ2, + S2)$Ii(iOn) (52; +a*):' 

where the s1, represent the positive zeros of J i ( Q ) .  

cut for y in the lower half-plane, as 
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and r ( p )  is as defined in Appendix A. 
For r > 1 the most convenient form of the solution is obtained as 

- K,(yr) K+(is) - e-isz ds 
(1  + h2) K + ( s )  yKL(y) (s - is) 2( 1 + h2) r2(s - iS) 

I Pa0 ,-isx 1 

We are now in a position to recover the solution of the original harmonic problem 
by taking the limit S+O in (B 17)-(B 20). First note, from (B 15) that 

If we now make use of (B 2),  (B 8), (B 17)-(B 21) and allow S - t O  we obtain, after 
considerable manipulation, the solution of the original harmonic problem. Thus for 
r < 1 we have 

J 2 ( Q ,  r )  e-Rnlsl 
Q3, K+(iQ,)Jg(Qn) 

in x < 0, (B 22a) 

and 
”. 1 

J 2 ( $ )  K- ( - ip) e-Ps( 1 - A p )  d p  in x > 0, 
xr2 

1 + h2 
$if(r,x) = 

n(2( 1 + 12)); 
(B 22b) 

where X ( p )  is defined in (B 19) and 

is a constant. 
The corresponding solutions for r > 1 are given by 

(B 23a) 
and 
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In  this Appendix we finally evaluate the asymptotic forms of the solutions (B 22), 

For r < 1 we have, immediately, from (B 22a) 
(B 23) in the limits x +  & 00. 

whilst an application of Laplace’s method to (B 22b) yields 

+:b> x) - -- ) a s x + + c o .  

For r > 1 we use Laplace’s method to  obtain the asymptotic forms of (B 23) as 

where i t  should be noted that the limits in (B 26) and (B 27) are taken with r fixed 
and finite. 

As in Appendix A, we have chosen here the solutions @:, +.,* that  have the least 
possible singular behaviour as x+O+ a t  the lip of the cylinder. From (B 14) and 
(B 226) we find that this choice leads to the following as x+O+ on r = 1 : 

The implications of the singular behaviour at the lip are discussed in $4. 
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